Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase
نویسندگان
چکیده
منابع مشابه
Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.
How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-b...
متن کاملRubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to ...
متن کاملRubisco activase chaperone activity is regulated by a post-translational mechanism in maize leaves.
Rubisco activase (RCA) is a molecular chaperone present in maize as 43 kDa and 41 kDa polypeptides. They are encoded by two different genes comprising an identical ORF that corresponds to the 43 kDa RCA polypeptide, and their transcripts do not show putative splicing sites. To determine the origin of the 41 kDa polypeptide, leaf poly A(+) mRNA was in vitro translated. Results demonstrated de no...
متن کاملRubisco, Rubisco activase, and global climate change.
Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either de...
متن کاملThe Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Cell
سال: 2017
ISSN: 1097-2765
DOI: 10.1016/j.molcel.2017.07.004